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Abstract

A theoretical analysis is presented of the behavior of sandwich panels having
dissimilar facings of unequal thickness when loaded in edgewise shear. De-
sign curves are presented for simply supported panels with dissimilar fac-
ings. Approximate formulas are included for clamped panels, The analysis
is compared with results of tests on 28 square panels of symmetrical iso-
tropic sandwich constructions. Included are descriptions of testing techniques
employed to induce pure shear in the test panels. A method is given for pre-
dicting the behavior at stresses exceeding proportional-limit values,

Introduction

The purpose of this work was to obtain information concerning the elastic
stability of flat panels of sandwich construction subjected to edgewise shear,
and to make possible the rational design of such panels.

lThis progress report is one of a series (ANC-23, Item 58-2) prepared and
distributed by the Forest Products Laboratory under Bureau of Naval
Weapons Order No. 19-61-8041-WEPS and U.3, Air Furce Order No. DO
33(616)61-06. Results here reported are preliminary anc .y be revised
as additional data become available. Orignial report dated May 1947.

ZMaintained at Madison, Wis., in cooperation with the University of Wisconsin,

Report No. 1560 (Revised)




The work done consists of (1) a theoretical developmen. { formulas and
charts by which the critical loads can be predicted, and (2} of tests to obtain
an estimate of the reliability of these predictions. A discussion of the meth-
ods used in the analysis together with a summary of results is presented.
The formulas by which the critical loads are determined are developed in
Appendix A,

Two types of support were considered; namely, all edges simply supported
and all edges clamped. The simply supported panels are assumed to have
orthotropic cores and dissimilar orthotropic facings. For all edges clamped,
however, the analysis is confined to isotropic cores and facings of similar
isotropic materials.

In order to apply the results of this analysis, much tedious calculation is
necessary. Hence, design curves are presented that were obtained with the
aid of a digital computer. In all of the computations, the bending stiffness of
the individual facings were assumed to be negligible because the facings were
usually very thin. Calculations were carried out for the simply supported
case only, Clamped panels are analyzed, but no curves are presented, In-
stead, a conservative approximate design formula is given, which utilizes the
known results for homogeneous isotropic panels and modifies them for iso-
tropic sandwich constructions.

Notation

a -- width of panel

b -- length of panel

Bj, BJ.' -- see equations (A 34);‘ and (A 38)

C -~ core thickness

Cmn' Cm' Dm -~ Fourier coefficients of deflection expresesions
c. i=1, ..., 5 -- gee equation (A 40)

D, Df(i), i=1,2 -~ flexural rigidities. See equations (2) and (10).

2When equation number is preceded by an A, this refers to an equation in
Appendix A,
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E.,E . ,i=1,2 -- Young's moduli of orthotropic facings

Ei, i=1, 2 -~ Young's moduli of isotropic facings
Ef -~ Young's modulus of isotropic facings
e , e

zx' yz

-- strains, See equations (A 6) and (A 7).

(1) ,i=1, 2 etc.

XX
fl’ fz -- facing thicknesses

1 2 12

F( ) , F( ) , F( ) -- see equation (10)

mn mn mn
an -~ see equation (13)
h --c + —;—(f1 + f?_) centroidal distance between

facings

rs :
Hmn -- see equation (10)
H: -~ see equation (21)
K , L

mn’ ~ mn

: -- see equations (10) and (13
(1) 4
L
mn

L -- value of L. at 5=0

o cr
L ,L -- buckling coefficients. See equation (1).

cr’ Txy

- loading in f . ’

Ncr' ny oading in force per unit length of edge
Sx’ Sy' S -- core shear parameters. See equation (4).

No subscript used when core is isotropic,

Report No, 1560 -3-
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limiting value of core shear parameter beyond
which buckling is associated with core shear
instability. See eguations (6), (7), and (8).

dimensionless parameter indicating relative
membrane stiffness of dissimilar facings.

See equation (10).

facing membrane stiffness. See equation (10).

see equations (A 8) and (A 10)

see equation (10)

deflection of panel in z direction
coordinate axes. See figure 1.

dimensionless facing properties. See equation
(10).

halfwave length of a buckle in an infinitely
long panel. See equation (A 24).

Poisson's ratios of facings,

moduli of rigidity of core

slope of deflection nodal lines. See equations
(A 32) and (A 33).

sce equation (10).

PO




Results and Discussion

Bucklinil..oad Factor

The buckling load factor is defined as

Lcr S (1)

where

Here h is the centroidal distance between facings, T is the membrane stiff-
ness of a facing, ¢ and o are the Poisson's ratios of a facing, D is the
.._’E.Y L3

bending stiffness of the panel, and N_,is the critical load in pounds per inch

of edge.
Lcr depends upon the aspect ratio %, the relative membrane stiffness
T
1
t = —— (3)
T1 + TZ
and two core shear parameters
2
c il
Sx = hz ) D ;—2
Fax
o (4
and S = esx ’ 6 = |Zx
y p'yz

Report No. 1560 -5-




which account for the effect of the transverse shear deformations in the core.
When S = 0 and the facings are isotropic, the theory reduces to that for a
x

homogeneous isotropic plate with stiffness equal to D given above.

Buckling by Core Shear Instability

As S increases, the effect of the transverse shear deformation increases
X

and the theoretical buckling load decreases, with a larger number of buckles.

The limiting behavior of the panel when Sx is large is treated separately, and
it 1s found that for sufficiently large Sx the buckling load factor depends only

on the core shear parameters and is given by

L = (5)
cr r'——s S

X

Y
a
¢ S e 0, &, ¢, . ics. Explici
or SX > le where le depends upon b, b t, and facing propertic Explicit

iormulas for le have been worked out for the case of simply supported panels

with similar isotropic facings in which case

1 -0 2
(——) 40+ (1 -9
x1
l-(rf 2 a.Z
( (1 +0) [0+~ ]
2 2
b
T, = Poisson's ratio of facings

which reduces, for isotropic cores (0 = 1), to

. 1 - -
g = (Here Sx = Sy = 5) (7)
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Sl = -—:—2— (8)
14 '—Z-
b
1 h2
= ==Nu o w . =wpt o .
Note that whenever Lcr @7. Ncr z Ni,o pyz h o p'yz

This limiting behavior was analyzed under the assumption that the facings
act as membranes, and yields results that are increasingly conservative as

the facings are made thicker. Theoretically, for Sx > le the number of

buckles is infinite, but in practice it will be finite and very large, since the
facings are not actually membranes. Since le is quite large, it is improbable

that any practical sandwich construction would have such a thick, soft core
as is necessary to produce this type of instability. Accordingly, the range of
Sx in the design curves does not extend to le . Buckling that is due to core

Bhear instability is an interesting phenomenon theoretically, but is not of
great practical significance. It does, however, indicate the assymptotic be-
havior of Lcr as Sx increases,

o a—

Theoretical Analysis

For both types of support that were considered, the case %a‘ 0, or an infinitely

long panel, was analyzed separately, The results of the analysis will be
discussed in the following order:

(1) Finite, simply supported

(2) Infinite, simply supported

(3) Clamped, finite or infinite (approximate analysis)

Finite Panel, Simply Supported, 0 < S <S8,

Lcr is the lowest root of the determinant of the following system of equations:

Report No, 1560 -7




m e ) )
= on ¥ Hmn Crs =0, mn =1,2,... (9)
- L = s =1
b “xy
where N
32-mnzr52 > 5 , ifm+randn+ 8 are odd
rs
H = (m“-r )(n -8)
0, otherwise
Vv 2 —— K , i=1, 2
mn D mn
(b _ 1 .2 o
Df 13 fi Ti . i=1, 2
(1) . (2) (2) (1), n°a’ 1) (2
t F\OORY 4+ (1-t) FYY K +(£—a-s+mS)F()F()
mn ~ mn mn mn bZ y'  mn mn
Vv =
n mn  mn mn mn
Y = tz F(l) + 2t (1-t) F(lz) + (l-t)2 F(Z)
mn mn mn mn
2.2 )
(i) 2 na __l_ na 2 10
Lo o™ tY, +9(a. 3 +yim) 2(10)
b i b
2 2 2
(i) 2. mna (1) L - 2
an - (I-Bi ) bZ ¥ Y Kmn b= 1
_ 222 | 44
x ) @ m + 28 nza = —
mn b 4 b -
2 2 2
(12) _ 1% mna” 1 (2) (1)
mn z(a+ o Il ) R A PRI PR Sy |
L 2 , e
t ) L . [E B fi'1=1’2
- T + T i N,
1 1 '
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The Vr(rtzl represent the effect of the bending stiffness of the

ings and are usually neglected,

Reduction to Similar Facings. --If the facings

so that

where

Report No, 1560

are similar,

P02 @, g
mn mn mn mn mn
K(1)=K(2) =K
mn mn mn
1 2
L( ) =L( ) oL
mn mn mn
nza.2
K + ( S +mS ) F
mn bZ mn
Vmn=
1+ L S +8 S
x X y mn
2
=1-
an Bty Kmn
mznza.Z 1 n4a4
K = gm + 28 + —
mn bZ o b4
L = om®+ 2a2+e(l—“zaz 2
mn @ Y bZ o b2. Ym
-9.

\.(10)

-

individual fac~-

(11)

(12)

| (13)




Note that this reduction can also be accomplished by setting t = 0 in which
case both facings have the properties of facing 1, or by setting t = 1 in which
case both facings have the properties of facing 2.

Reduction to Isotropic Facings. --If both facings are isotropic,

leo, Lo
TP T R Sk i P A (14)

so that the only essential dissimilarity of the facings is due to Poisson's
ratio. Since the influence of Poisson's ratio on the theoretical buckling load
is very small, one might as well assume ¢ 159, and compute an as if the

facings were similar and isotropic. The important dissimilarity of the fac-
ings is due to Young's modulus, and this effect is accounted for in D. This
permits using the same set of curves for both similar and dissimilar iso-

(1)

and v 2 are neglected.
mn mn

tropic facings, if V

For dissimilar isotropic facings,

T, T, h E, f,
P=y=t, ' htT 2z i=h? (15)
1 2 l -0,

1

while for similar isotropic facings,

2
Ef fl th

D=
(10 (£,+1))

(16)

and for both similar and dissimilar isotropic facings

2 2
K(l) = K(Z) = (m2 + EL)Z
mn mn 2 ~
b
l -c 2 2 2 2 l-o
(1) _, (2 _ 2 f,na na { 2,
L =1 7 =m + (=) 2+e[ z+(z ) m“] (17)
b b
l-¢ 2 2
" =F(l)=F(12)=F(Z)= £(m2+na )2 y
mn mn mn mn bZ

Report No. 1560 -10-
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so that

2 2 l-c¢ 2 2
[1+( 35 +m’s ) (=) (m'+ 222
b x Yy 2 bZ
Vean ® S 1-v, 2.2 77 1.0, T-7, zz, (18)
1+[m +( —_ ) 5 ]S +[ + (—— > ym'] S +8 8 ( ) (m” + )
y xy 2
b b b
. . - . . =
Reduction to Isotropic Core. --If the core is isotropic, B Fyz oo

Sx = Sy g S, and 6 = 1, No important simplification in an is possible unless

the facings are isotropic and have equal Poisgon's ratics, in which case

2 2
(m2+ﬂ_.i‘.._)2
b
Vmn - 5 n2 2 (19)
1+S(m™ + ; )

b

Infinitely Long Panel, Simply Supported, 0 -<—Sx < Sxi

Lcr is determined as the lowest root of the following system of equations

(V(1)+V Z)+V 1) J u* ;
c_, 5 )S ) =0, m=12... (20)
L ;(V 1

—

+V (2 +V_ )
xy ri ri’;
where
r 8mr , .
H =L—————— , if m + r is odd
m T (mz - rz)
(23)
0 , otherwise,
(1) (Z) . . ,
and V 1 1 and le are obtained from the formulas given earlier for
m

- (1) @) . _ :
the finitc panel for an, an, and an by putting n = 1 and replacing b by & .

5 now represents the aspect ratio of a single buckle, and its value must be
a

chosen by trial to make Lcr a minimum.,

Report No. 1560 ~11-
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Numerical Analysis

Finite Panel, Simply Supported

The deflection of the buckled panel is represented by

w=§ % C sin mrXx sin-’i-z
mn a b

m=1ln=l

The shape and number of waves in the buckled surface is different for each

different combination of values for %, sx, 6, a, and so forth. Thus, the

particular Cmn' 8, which are largest and most influential in describing the

buckled surface, are different for each panel and are not necessarily those for
which m and n are small. (When Sx is large, the number of buckles should
theoretically become infinite.) Rather than simply take a large number of
terms, perhaps 50, and hope thereby to include the important terms for all
panels, an attempt was made to select an optimum group of 30 terms for each
panel considered. This avoided the problem of excessive cumulative round-
off error, which is always a danger when working with a large order determi-
nant,

Because the determinant of system (9) contains so many zeros it factors into
two determinants, one in which m + n is even and one in which m + n is odd,
The even determinant was found to yield the lower root Lcr everywhere ex-

cept where 0.33 = (E'-) < 9-<(§'—) % 0.55. Accordingly, the graph L.__ versus
b 1 b b, cr

%is cusped as shown in figure 2,

Accuracy to within 1 percent could be maintained in the range 0 < Sx < le by

using the best 30 terms chosen from among the first 49 terms of the even
determinant (all terms for which m + n < 14) or from among the first 56 terms
of the odd determinant (all terms for which m + n < 15). The process of
selecting the '"best' terms is described in Appendix B.

Report No, 1560 -12-




The values of Lcr for a square panel with Sx = 0 was found to be 9. 35 as

—

compared to 9. 34 found by Seydel (_I_Q_)ﬁ.

Infinitely Long Panel, Simply Supported

The deflection of the buckled panel is represented by

w = (C sinZX +D cos T"—‘\L)sinmﬂ’x
m 5 m 6 a

m=1

It is shown in Appendix A that each Drn can be expressed in terms of all the

Cm' s so that ultimately the condition for instability can be written in terms

of the Cm' s alone. This condition is system (20), The determinant of this
system also factors into two parts, one in which m is even and one in which
m is odd. These two determinants always have exactly the same root Lcr'

Accordingly, the curves for this report were made using the even determinant.

Note that each off-diagonal term in the determinant of system (20) is itself an
infinite sum over r. Accuracy to within 0.1 percent could be maintained in
the range 0 < Sx< le by taking 4 terms in each off-diagonal sum and using a

4 X 4 determinant.

There was no need to optimally select important terms in this analysis be-

6
cause the variation in the shape of the buckle is accounted for by T For each

panel, gwas chosen by trial so as to minimize Lcr . The dependence of Lcr

on -g turned out to be roughly parabolic (Appendix B and fig. 3).

-‘-I-Underlined numbers in parenthesis refer to Literature Cited at end of this
report.

Report No. 1560 -13.-



How to Use the Curves

The curves in figures 4 through 8 are plotted from formulas (9) and (10) and

show the buckling coefficient, Lcr' in terms of the aspect ratio 2'-. and the

b

parameters Sx and t. All of the curves on a single sheet correspond to the

same choice of facing materials; that is, they have the same set of values for
ay Bl' yl, @y [32, and Y, In addition, the same choice of facing materials
always appears on figures 4, 5, and 6 corresponding to 8 = 0.4, 1,0, and 2. 5.
These values of 6 were chosen so that the curves would apply to hexagonal
honeycomb and isotropic cores.

Each figure shows a family of curves depending on the parameter Sx’ of which

——

five members are shown, corresponding to Sx =0, 0.05, 0.1, 0.2, and 0, 4,

This range is sufficient to include most practical sandwich constructions,
Each member of this family is further shown as a subfamily of curves depend-
ing on t, of which from two to four members are shown, The curves for t=0
repres.e-nt a panel with similar facings having the properties of facing 1, and
the curves for t = | represent a panel with similar facings having the proper-~
ties of facing 2.

e - Wb bt o B et ot g sl e i)

Note that if the panel has dissimilar facings (0 < t < 1), one of type 1 and the
other of type 2, the theoretical buckling load factor always lies between those
for panels with similar facings of type 1 and type 2. The curves indicate that
one could interpolate linearly with respect to t with very little error, so that
the only curves needed to design panels with dissimilar facings are the two for
similar facings of type 1 and type 2.

Accordingly, the curves in figures 7 and 8 are plotted for similar orthotropic
facings only. Furthermore, only three values of Sx are used. If intermediate
values of Sx are desired, a plot of Lcr versus Sx must be drawn from the three

a— — ———

values of Sx provided.

The computed data from which figures 7 and 8 were constructed do not provide
sufficient information to draw cuaped curves. The location of the cusps shifted
unexpectedly with a change in the value of the parameter o. Since the cusps
are known to be very shallow, it was decided to draw the Epproxima.te envelope
as a dashed line and omit cusps on these curves, For each value of Sx' the

Report No, 1560 -14a



uppermost curve shows both the envelope and the computer output on three
branches, where the middle branch corresponds to m + n odd.

The values of o, B, and y that were used in this report apply approximately
to most of the glass-fabric laminates listed in table 1 of Forest Products
Laboratory Report No, 1867 (7), and exactly to isotropic facings whose
Poisson's ratio is 1/4,

The computer output from which the design curves were constructed is given in
tables 1 and 2, Thesevalues are probablyaccurate to within 1 percent (Appendix B).

Finite or Infinite Panel, All Edges
Clamped, 0< S < Sl

Only similar isotropic facings and isotropic cores are considered. Let Lo

be the value of . atS =0, WhenS = 0, the core shear rigidity is infinite,
cr
plane transverse cross sections of the panel remain plane during bending, and
the sandwich can be treated as a homogeneous plate whose bending stiffness is
that of the spaced facings, namely

E f f h’2 f .+ f
f 12 1 "2
2

1-0'f f1+f

‘ (22)
2

In this manner, values of Lo can be obtained from the literature in this field

and a curve of Lo versus %as computed by Smith (2) for clamped panels is

— —

given in figure 9. Also included in figure 9, for comparison, is a curve for
LO , from formula 9, for simply supported panels.

For values of S in the range 0 < 5 < S1 Lcr can be approximated with a fair

degree of accuracy by

L = »0<8<S (23)
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This formula was constructed so astomake . =L atS =0and L = -L
cr o cr S1
atS = Sl' For § > Sl’ ]..cr = -;— A more exact mathematical analysis of the

clamped panel is given in Appendix A, Computations made with that method

indicate that formula (23) is reliable at % =0 and % = 1; the reliability of the
formula has not been established for values of 2 between these two., A method

b
by which an estimate of the buckling load can be made on the basis of formula
(23) when the facings are stressed beyond their proportional limit is described
in the analysis of test results,

Experimental Investigation

Introduction

Much work has been done at the Forest Products Laboratory to determine the
behavior of flat plywood panels when subjected to shear. An approximate ex-
tension of the plywood theories and experimental techniques to sandwich con-
struction was made in 1947. In contrast to the specimens of the present study,
the specimens used in that early work were thin and were large in size, and
because of that, the buckling loads were not adversely affected by shearing
deformations in the core. The agreement of the test results for sandwich
panels with the extended plywood theory was not good. The reasons suggested
were that in the tests, the edge conditions were not properly controlled, and
that the framework that applied the loads may not have been sufficiently rigid
and may have influenced the results considerably. It was observed also that
many of the specimens failed by sudden crimping before the load-deflection
curves showed evidence that buckling had occurred.

The present type of specimen is shown in figure 10, Plywood loading rails
were bonded to both facings at all four edges of the panels. The corners of
the panel were cut so that there was approximately 1/8-inch clearance between
the nearest corners of adjacent edge rails, Cut-out corners were curved to
minimize stress concentrations. The testing arrangement that was used for
the plywood panels, and also for the early sandwich work, was designed to
induce shear in the panel by means of a compression type of loading apparatus,
Subsequently it was discovered that a tension type of apparatus would develop
the same quality of shear and would also produce greater buckling loads than
would apparatus of the compression type. The compression arrangement was
unsatisfactory because it tended to amplify initial eccentricities and, for that

Report No. 1560 -16-




. . |
reason, gave low results. The tension apparatus was more convenient and !
avoided the danger of including eccentricities. Therefore all the test results !
included in this report were obtained from tests in the tension type of apparatus,

It was discovered that the compression at the loaded corner was much greater
than that needed to produce pure shear in the panel at that location. This
would cause failure of panels at low loads, particularly if the panel was of a
construction likely to crimp just as buckling of the entire panel would occur.
This condition was corrected by changing the angle of the force applied to the
rails, The change was made by increasing the length of the loading links urtil
the strains at the corner showed that pure shear was being developed.

Description of Materials

Facings. --Panel facings consisted of clad aluminum alloy 245-T3 in thick-
nesses of either 0,012, 0.020, or 0.032 inch. The facings on any one panel
were of the same thickness.

Cores, -~-The core materials were not isotropic in the usual sense, but were
isotropic to the extent that the shear modulus was the same or nearly the same
in directions parallel and perpendicular to a side of the panel. This would not
be true of all core materials, particularly the present type of honeycomb cores.
The following core materials were used in this study:

Cores of end-grain balsa, grain direction normal to the facings of the sandwich,
were made by edge-bonding 2~ by 4-inch blocks with a thermosetting synthetic
resin adhesive. The density range of the balsa was from 5 to 9 pounds per
cubic foot.

Hard sponge rubber cores were of an expanded, hard, synthetic rubber. The
cores were built up of strips approximately 2 inches wide edge-bonded with a
thermosetting synthetic resin adhesive. The density of the cores was from
6.2 to 7. 2 pounds per cubic foot.

Cores of corkboard sheet material were used in several panels for the purpose
of obtaining a sandwich that had a core material with an extremely low modulus
of rigidity. This material was obtained in three grades having moduli of
rigidity of 1,500, 950, and 320 pounds per square inch, The corkboard was

of the type commonly used for bulletin boards,

Bonding. --The facings were bonded to the cores in a two-stage process. The

primary adhesive used on all facing was a high-temperature-setting mixture
of thermosetting resin and synthetic rubber cured for 30 minutes at 325° F.

Report No. 1560 -17-




The secondary adhesive (used to bond the facings to the balsa cores) was a
high-temperature-setting, acid-catalyzed, phenol-resin cured in a hot press
at 230° F. and 75 pounds per square inch for 1 hour.

This same secondary adhesive was used for panels with hard sponge rubher
cores with the exception that the pressure was 12 pounds per square inch
instead of 75 pounds per square inch,

Facings were bonded to the corkboard cores with a secondary adhesive of a
room-temperature-setting, resorcinol resin, cured in a press at room tem-
perature and 14 pounds per square inch for 8 hours,

The loading rails, of 1- or 1-1/2-inch birch plywood 4 inches wide, were
bonded to the facings with a room-temperature-setting, resorcinol resin,
cured in a press at room termmperature for 8 hours at the appropriate pressures
corresponding to those used to bond the facings to the cores.

Methods of Testing

The panels were tested in a hydraulic testing machine, as shown in figure 10.
Pins placed near the ends of the loading rails werec loaded through links
attached to a central loading pin at each end of the vertical diagonal of the
specimen. The central loading pins were held in eyebolts that were supported
in a spherical seat in the upper and lower heads of the testing machine. The
entire arrangement was constructed so as to prevent eccentricity of load appli-
cation, A sketch in figure 11 shows the exact panel size and position of pins,

In order to prevent local instability, 1- by 4-inch wood strips were clamped on
each side of the loading rails near the upper and lower ends of the specimen,
These strips were placed perpendicular to the direction of the applied load so
as to restrain the specimen to its plane shape during the test, thereby de-
creasing the effects of eccentricities in the specimen itself.

Lateral deflection at the center of the panel was measured by means of a dial
gage.

The panels, which had cores of 1/8-inch nominal thickness, were tested with
the angle of the loading links at 45° to the vertical, Those panels buckled as

a whole, and no failures were attributed to local compression concentrations
near the loaded ends. The panels with 1/4-inch balsa cores were tested with
the loading links at an angle of 35.5° to the vertical. This position of the

links was found after several trials at angles between 0° and 45°, The correct
angle was determined by observing the strains on each facing at the corner for
various angles and finally choosing the one that produced pure shear. Additional
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gages were placed elsewhere in the panel to check the quality of the shear.
The strains were measured by means of 1-inch electric strain gages bonded
to each facing as near to the edge rail as possible, Strains in three directions
were measured at each location, thus enabling the shear to be computed at
various points throughout the panel.

Results of the study to determine the proper direction of load to produce pure
shear at the loaded corner are presented in figure 12, The strains at the
corner of panel 121 are represented in strain circle diagrams for the various
angles at which the load was applied, The diagram depicting the load applied
at 45° to the vertical (6 = 45°) shows that the compression strain was approxi-
mately 60 percent larger than required to produce pure shear. Pure shear
was produced for 0 = 35.5°. Loads applied at angles less than 35.5° produced
extensions greater than needed for pure shear, but the unbalance was not so
severe compared with the compression illustration even to 6 = 0°, A similar
panel failed at about one-half the load for & = 45° than for 6 = 35,5°.

The results of an additional test to determine the quality of shear at various
locations on panel 121 are presented in figure 13, As before, the measured
strains are represented in strain circle diagrams. The strain circles ata
panel load of 20, 000 pounds show that pure shear existed at the loaded corner,
that there was a slight excess of extension at the free corner, and that central
portions of the panel were subjected to nearly pure shear. By discounting the
small concentration of strain at the free corner, the entire panel was consid-
ered to be subjected to pure shear,

Results of Tests

The panel dimensjons, buckling loads, and maximum loads are given in table 3.

The buckling loads were determined by examining the load-deflection curves,
or load-strain curves for changes in shape as the load was increased. Sudden
increases in deflections or strains indicated that the buckling load had been
reached. Observations of the specimen during the test also gave a reasonable
indication of the load at which buckling occurred. The facing stresses at
these buckling loads ‘were computed by the formula

P

q', =
£ 2t na? + b
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where

P -~ buckling load
f -~ facing thickness
a ~- panel width

b -~ panel length (for the panels tested b = a

P
! = er——m——
andqf 2N fa )

Final failure of the panels occurred at or slightly above the buckling load.
These failures occurred suddenly and were usually of the crimping type caused
by sudden shear failure of the core due to the high stresses induced by the
buckle. Although approximately half of the panels failed at loads greater than
necessary to cause buckling, the greatest difference between any maximum
load and the corresponding buckling load was only 30 percent., Buckling of
these panels under static load might precipitate failure at the buckling load

rather than allow the panels to carry additional load, as they did in the testing
machine.

Bt o s
o

Analysis of Test Results

A discussion of the mathematical analysis for the buckling of flat panels of
isotropic sandwich construction has been given previously, The results for
simply supported panels are contained in the curves of figures 4 through 8
and for clamped panels in approximate formula (23), The formula for the
facing stress at which the panel will buckle is

N 'n'ZE f, £ hz
q = cr £ 172 CL
g fz aZ N (fl . fz)z cr (24)
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'where

h= c+

2
¢ == core thickness

f, -~ facing thicknesses

a -- width of panel

b «- length of panel
2

)\£= l-o'f

g,

i Poisson' s ratio of facings

For simply supported panels,

('
value taken from figure 4, S < ! 5
1+2
bZ
L =%
cr 1 1
=~ ,8>
S - a2
1+ =5
b
For clamped panels,
L 1
= ., S<
. 4 az aZ
1+[L0-§(1+—2)]S 1+-2
b
L =
"1, :
5 %52 T3
1+ =
. bZ
E£ -- compressive modulus of elasticity of the facings
I
2 ,

T cflf2 Ef 1

2
Ry pc(fl+fz)

Be =" shear modulus of the core

I |
Note whenever Lcr— 5

1
0
N
—
+|o
|
(38
~
n,
—
+
L2}
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Values of LO were taken from the literature in this field and are presented in

figure 9. For square panels with edges clamped, LO = 14,7,

In order to establish the theory as a criterion for the performance of sandwich
panels in shear, experimental values of the buckling factor were plotted
against values of S in figure 14, Since S depends upon the modulus of elasticity
of the facings, the only test results that could be plotted were those in which
the proportional limit stress was not exceeded, because the modulus of elas-~
ticity above proportional limit stress values was not readily determined without
consideration of the panel edge conditions. A later paragraph will be devoted
to behavior above proportional limit stress values. The value of S also de~
pends upon the shear modulus of the core. The shearing moduli are given in
table 3. The values used here were established by previous tests of the same
kinds of core materials.

Examination of the points and curves shown in figure 14 shows that the curves
fairly well represent the experimental points, The points for the most part
lie in the region of the curve for plates with clamped edges and the curve for
plates with edges simply supported in what is probably the practical range for
S, that is, for values less than 0.4, For values of S greater than 0. 4 the
Experimental points lie above the theoretical curve. The stiffnesses of the
individual facings were not included in the calculations for this curve. If these
stiffnesses are included, the theoretical values will be increased., This in-
crease is greater for large values of S than for small values, It was found by
computation that the theoretical value for the construction represented by the
point ncar S = 4 was approximately doubled when the stiffness of the individual
facings was taken into account. The inclusion of the stiffness of the individual
facings in the calculations requires a separate curve for each particular
sandwich construction.

A few panels were tested in which buckling occurred at facing stresses
greater than the compressive, proportional-limil stress., Since the compres-
sive and tensile stresses developed in the facings of the panel are equal to the
shear stress, it was considered that the facing properties controlling the
behavior were the compressive propertics because the proportional limit
stress in compression is lower than that in tension., It was also assumed that
the modulus of elasticity of the facings decreased the same amount in all
directions at stresses greater than the compressive, proportional-limit value.
The modulus of elasticity at stresses greater than the compressive proportional
limit stress was assumed to be the ‘tangeni modulus,’ which is defined as the
slope of the stress-strain curve at any stress.
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Expressions for behavior of isotropic sandwich constructions at stresses
greater than the proportional limit were obtained as follows, Approximate
formula (23) was used to account for the dependence of Lcr upon § for simply

supported panels by taking

1
S = K
1 + =~
b2
so that, for simple support,
Lo 1
<
Lcr” az y 0. £8< az (26)
1+S[L°-(1+—2)] 1+ =
b b
Taking the reciprocal of equation (24) and substituting for Lcr'
2 2 az
, a )\f(f1 +f2) c(£l+£2)[Lo-(1+;-2)]
Y Z — 3 + 5 (27
f n F_.f flfzh Lo Mo h L0

Here LO is the value of Lcr at S = 0 for simply supported panels and can be

obtained from figure 4, Since the facings are assumed to be thin, -}% can be
cancelled in the second term of equation (27). The assumption that the tangent
modulus is to be used leads to

2 2 az
. a xf(fl+f2) (f1+f2)[[L°-(1+;2)]
quv 1r2

2
Eftfleh Lo pchLo
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Multiplying both sides by the Young's modulus of elasticity, E:f

where A = 3

2 > (28)

2
_'n' flsz

where S = f

2
a hpc(f1+f

2

This straight line can be plotted on the same sheet with a curve, as shown in

E E
in figure 15, T versus &= constructed from the stress strain data for the
£ ft

facing material. Since and E_.  at buckling must be compatible with the

stress strain curve, the intersection of these two curves gives the critical
buckling stress,

| The data for the last two specimens given in table 3 were analyzed by means

of equation (28). The edges of the panels were assumed to be simply supported.
} The computed buckling stresses were nearly identical with the experimental
values. An additional column in table 3 gives these computed values.
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Conclusions

The mathematical analysis fairly well represents the stability behavior of
square, flat panels of symmetrical, isotropic, sandwich constructions sub-
jected to pure shear. The testing techniques described will produce nearly
pure shear in square, flat, panels of symmetrical, isotropic, sandwich con-
structions.

The elastic buckling load of simply supported rectangular sandwich panels with
dissimilar facings when subjected to pure shear can be obtained from the de-
sign curves and formulas (1) through (4).

The plastic buckling stress in the facings of a flat panel of symmetrical, iso-
tropic, sandwich construction can be estimated as follows:

1. Determine values of the parameter Lo from the curves of figure 9, after

considerations as to edge conditions and size of panel.

2. With these values and the construction dimensions and properties, use
equation (28) to determine the straight line to be drawn on a graph similar to
figure 15.

3. The value of the ordinate at the intersection of this straight line with the
curve similar to figure 15 will give the facing stress if it is divided into the
Young's modulus of the facing material.

4. If a panel is to be designed, the above procedure can be reversed, A
stress would be known; therefore, a modulus is known. Then equation (28)
can be solved for the core thickness or shear modulus or whatever else is to
ke found,
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APPENDIX A

Mathematical Analysis of the Shear Stability

of Flat Sandwich Panels

Flat simply supported sandwich panels with dissimilar orthotropic facings of
unequal thickness and orthotropic cores are analyzed in sections A 1 through
A 3 by energy methods. Clamped panels with similar isotropic facings of un-
equal thickness and isotropic cores are analyzed in sections A 4 through A 6
by the differential equations method of Libove and Batdorf (6).

A 1. Finite Dissimilar Panels,
Simply Supported

The lateral deflection is assumed to be a double sine series

e

m= 1 n= 1 (A )

with w__ = C__ sin BIX gp 0¥ (A 2)
mn mn a b

where x and y are coordinates with axes taken in two of the edges of the panel.
The x, x plane is fixed at the juncture of the core and the facing of thickness
f1 and the y axis is taken as shown in figure 1. The letters a and b designate
the dimensions of the panel with a measured along the x-axis, ¢ designates the
thickness of the core, and f the thickness of the second facmg.

Expression(A 1) is taken for the deflection throughout the thickness of the panel.

In the analysis it is assumed that the core and facing materials are orthotropic.

Two of the orthotropic axes of these materials are assumed to be parallel to
the edges of the paneland the third perpendicular to the facings.

The corc is assumed to be antiplane. That is, the transverse shear siresses
are constant throughout its thickness and its bending ecnergy may be neglected,
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To this end, the components of displacement in the core are taken as double
infinite sums, over m and n, of

\
9 wn‘m
qun = (kmn z+ qmn) 9 x
> (A 3)
2 ¥mn
Ve B (hmn z+ rmn) 9y
mn
J

The constants k s qm , h , and r are chosen so as to minimize the
mn n mn mn

total potential energy of the loaded sandwich panel. This method is a general-
ization of that used in references (4), (5), and (11).

The continuity of displacements at the glue lines prescribes that the compo-
nents (A 3) evaluated at z = 0 and z = ¢ shall be those of the inner surfaces of
facing 1 and facing 2, respectively, Within each facing, the components of
displacement are assumed to be such that sections originally plane and per-
pendicular to the middle surface of the facing remain plane and perpendicular
to the deformed middle surface. Accordingly, the components of displace~
ment in facing 1 and facing 2 are taken as double infinite sums, over m and n,
of

ow
4 9mn 8x
mn
v men
1 = (r - z)
mn mn o2y
> (A 4)
men
u, =(kmnc+qmn-z+c) ™
mn
8Wmn
vzmn=(hmnc+rmn-z+c) 5y )

The components of strain with core or facing will be denoted by the super-
scripts ¢, 1, and 2. Summation over the subscripts m and n is implied.

o w
) mn
n' oy

o w
mn

& x

9 a1k

, eg"z) =(1+h_ (A 5)

The remaining strains in the core are neglected.
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Jt-i8 convenient to consider the components of strain in the facings as the
superposition of two states of strain. The first of these consists of the mem-
brane strains or strains in their middle surfaces:

T f bzw h
) a4 —32
XX mn 2 2

mn 9 x

2
£ 0w
93&1) = (r N _i) mn
ymn mn 2 ay2
9 zw
e(l) = (qmn Y Tron Y fl) -
*Ymn O9xdy
2 > (A 6)

& sk e +i§-) 2 Vmn
xx ~ V'mn 9mn 2 2

mn - 9x

2
f 9w
e(z) = (hmn ct+r ¥ -zi) :;m
YV mn 9y
2

(2) ® ¥mn
e = (k c+q + h c+r + ) ——
xy mn mn mn mn 2

mn 9 x 8y J

The second state of strain in the facings is that associated with the bending of

the facings about their own middle surfaces.,

the components

This state, in either facing, has

~
2] Zw
o = . g mn
2
mn 9x
82wm
e'Yy = - z' Zn - (A7)
mn ay
82w
e! = =22 mn ~
*Y mn 8x0y

where z' is measured from the middle surface of the facing.

-28-
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The strain energy of the core or facings is given by

1 2 2 B
U=z—|[E e + E e + 2E_ o _e__ e
FAN X xXx Yy vy X yX XX yy
v
f (a®)
2 2 2
+ N\ My Cxy + N bys Cys N, B ] dav

J
where, for the material under consideration (core or facing), \ =1 = ny o-xy’
E§ and ?za.re Young's moduli, “xy’ uyz’ and M, are moduli of rigidity, and
c

and o are Poisson's ratios, Primed letters will denote the elastic
constants of the core material, and unprimed letters with subscripti =1, 2
will denote those of the facing materials. The integration in formula (A 8) is

to be carried out over the entire volume of the core or facing.

The total strain energy of the panel can finally be expressed in the form

2 T
b 2
U= Z Z_l rI‘mn cmn (A 9)

where T is a quadratic in k yh ,q , and r « This method is
mn mn mn mn mn

found in Forest Products Laboratory Reports Nos. 1583-C (1) and 1583-B (2).

Let ny designate the shear force per inch of edge applied to the edges of the

panel. It is assumed that N__ is constant over the edges of the panel and that

no other loads are applied, The work done by the applied load is then

ar—~b
9w 9w
UL—ny e 5—; dy dx (A 10)
JO (9}
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With the substitution of (A 1) and (A 2) for wit is found that

2 )
T N
L 8 /. mn rs mn
m=1 n=]1] r=1 sg=1

Hrs = 32mnrs ifm+randn+ s are odd
2 2 2 2 2
7 (m -r)(n -8)

where

(A 12)

Oifm+ rorn+ s are even

The total potential energy of the panel is

or, with the use of equations (A 9) and (A 10)

2 e ™
2 m N §
_ bw 2 xy X N T rs
w o= 8a Z z Tmncmn+ 8 ya Z___, L‘ Cx‘nncrs Hmn (A 13)

m=1 n=1 m=ln=lr=1s8=1

This expression depends upon the undetermined parameters Cmn » q ,

r , k_, and h_ _, the last four of which appear in the expression T .
mn ~mn mn mn

These five sets of parameters are determined by imposing the conditions

Bw 8Tmn i)Tmn 8Tmn aTmn
sc__ "% v @ "% m )% s "% FR__=° -
mn mn mn mn mn

The first of these conditions yields

-E- Tmn Cmn + ny Z i) CI‘S }'f:n=0 m, n=l, 2, 3, cavan
Va
r=1 sg=1
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Let T designate the expression for T __ after impoaing the last four
mn mn

conditions. Then upon imposing all five conditions

Y

T C +N c H°

b
a mn mn Xy rs mn

=0 m, n=1,2,3 -=--- (A 14)

r=]1 s=1l

An expression for Tr'n may be given in terms of the eight physical constants

\
Q’i = ~
*xi o'yxi
B = A t 2 pisl, 2
A,B )
Y, = —t (A 15)
! xi yi f
c -rr2
Hax
c 1r2
Sy* 7z " PF
h a
Yz J
and the expressions
D = T 2wt ~
'1'1 + T2
__\/_E‘.E.
xioyioo
T, = _.__{__....1.’1=1,z > (A 16)
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2
INC I W SO
f 12 ’
(A 16)
t = Tl
’I‘1 + TZ
<
This expression is
nfoe), (@
T'W =D — [V + Vv + Vv ] (A17)
mn aZ mn mn mn :
where z
(i) H
D 3
R S ) . :
an- D Kmn i=1, 2 (A 18) :
2.2 2 4 4
kW o mtygmna ,Lne 0, (A 19)
mn 2 a, 4
b i b
and W
2 2
er) kB oy pE) gD me g, 2y p() g2
mn mn mn ~mn b?. Y x' "mn mn
v =
mnoy, +[tF( (2+(1t)F()(1]S+SSF(1 Fi2)
mn mn Yy mn mn
with
Y = tz F(l) + 2t(l-t) F(lz) + (l-t)?‘ F(Z)
mn mn mn mn
(i) ZaZ ZZ
L -am+y—-—+e(————+ym)
ma B 4 P L(A 20)
mn ‘" 2 Y
b
222
(12) _ (1 21 % mna (2) (1)
an"[z (O’Z+Q’1)-BIBZ] 2 Z[IK +Y2 ]
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Let
L = Nx az
Ry --17 (A 21)
Dnrm

- et 44 A s
ikl

Then with the substitution of (A 17) into (A 14), one obtains

V(l) + V(Z) + V N
mn mn mn C + rs
L mn H C =0, m,n=1,2,... (A 22)
mn ]

Xy r=1 s=1 f

o'lp

The expression vr(r& accounts for the effect of the bending of a facing about its

own middle surface. This effect is usually neglected because it is assumed that
the facings are thin,

The solution Cmn =0, all m and n, is the one which holds for arbitrary values
of L, below the critical load. At the instant of buckling, however, the lateral

deflection is nonzero. The condition that system (A 22) have a nonzero solutionis
that its determinant must vanish; this condition determines two values of L,

since the determinant separates into two factors, one in which m + nis even
and the other in which m + n is odd. The critical buckling constant, Lcr , 18

the smaller of the two. The critical shear force is then

L (A 23)

NlﬂN
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A 2, Infinite Panels Dissimilar Facings,

5
Simply Supported™

The lateral deflection is taken in the form

V‘“"\
\
w = (C_sin 2L + D cos ZY¥) gin BIX (A 24)
m 6 m 5 a
m=1

where & is the half wave length of a longitudinal normal section of the panel.

It is again assumed that the deflection is constant throughout the thickness of
the panel.

The strain energy in a section of the panel of length § associated with either of
the two terms in (A 24) may be obtained from formula (A 9) by taking the single
termn =l in the summation over n and by replacing b by § and le by Cm or

Dm. Since the energies associated with the two terms are additive, the strain

energy in the sandwich is

2 ;
S 2 2
U = oy Tml (Cm + Dm) (A 25)

m=1l

where T . denotes T __ of formula (A 9) withn =1 and b replaced by §.
ml mn - -

An expression for the work done by an applied uniform shear force Nx on a

section of the panel of length § is obtained by substituting (A 24) into (A 10) and
integrating over an interval of length § in place of b. This leads to

pA -
__rn” i r
U, = - N Z Z {crnm cmnr} He (A 26)

m=1 r=1

-S-This case has been discussed by Seide (8) for sandwich with equal facings.
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where

Hr =-——8—-£n—L— for m + r odd
m 2 2

r(m -r)
(A 27)
0 for m+ r even

From formulas (A 25) and (A 26) the total potential energy in the sandwich,
U - U y 18

w s bt Z { +D} .__ZZZ{CD -cn}n (a28)

m=1r=l
For the determination of the parameters _C_.’T’_, Erﬂ' qml, ml’ k 11 and h LAl
the last four sets of which appear in T the conditions —e— = 0 dw 0
PP ml’ onditio -0 3 = 0,
— m m
8Tml aTml aTml aTml
— = 0, =0, =0, = 0 are imposed, The first two of
9q or dk oh
ml ml ml ml

these yield

5 ViR

=T C -N 2 D H =0, m=1, 2, -=-- (A 29)

a ml m Xy r m

r=1

and

& r

- T D +N % CH =0, m=1,2, ---- (A 30)

a ml m Xy r m

r=1

respectively. Let T'ml designate the expression for Tml after imposing the
last four conditions, The two preceding equations with T'ml substituted for

’I‘m1 then result from imposing all conditions. After making this modification

change r to s and then m to r throughout formula (A 30) and substitute the
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expression for Dr obtained in this manner into (A 29), Then

C R =0, m=1,2,3, ----
m I‘
ml rl

With the substitution of expressions obtained from (A 17) for Tr‘nl and Tl'_1
and with the use of (A 21),
F4
(v By e = H H
ml ml ml’ a 8 m
2 Cm - M, {2 Cg= 0
L (v 7+ +V )8
Xy s=1 Lro1 rl rl rl 2
s=1,2, 3, ... (A 31)

where V(l) ,i=1, 2, and V__ are obtained from V(l) and V__ by settingn =
ml - ml mn - mn

and substituting § for b. This system of equations breaks down into two parts,
one in which m is odd and one in which m is even. The critical shear force is
obtained from | Lcr , which is the smaller value of Lx at which one or the other

of the determinants of the two systems vanishes. The terms VI:) and Vill),

i =1, 2, may be neglected if the facings are thin.

A 3. Limiting Behavior When Sx is Large;

Simple Support

It has been reported by Seide (8); that, when S is sufficiently large, for iso-
tropic sandwich constructions

1
Lr®s

The deflected surface is characterized by buckles of short wave length and
.straight nodal lines. This type of instability, which is associated with
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transverse shear defofrmations of the core, will now be established for panels
with dissimilar orthotropic facings and orthotropic cores,

For the case of a finite rectangular panel, the deflection is taken as

w=C sinlra—xsin%ycos%z (y + nx) (A 32)

For the case of an infinitely long panel, the deflection is taken as

w=CsinEfsing-(y+nx) (A 33)

In these expressions, n is the slope of the nodal lines, n is an integer denoting

the number of buckles in a finite panel, and § is the half wave length of a buckle
in an infinitely long panel. These parameters will be chosen so as to minimize
the total potential energy of the loaded panel.

A possible source of error in results obtained by the use of the above expres- -
sion is that the condition that the bending moments vanish on the edges of the
panel cannot be satisfied. In the case of an infinitely long panel where (A 33)
is used the errors so introduced are not large. When S is large it is expected
that results obtained by the use of formula (A 32) will also be in good approxi-
mation to thnse obtained by more exact methods.

An expression for the critical shear load, when w is of the form given by (A 32)
or (A 33), can be obtained by making modifications in the formulas of section
A 1. Simply drop the subscripts m and n so that Won SV and w is given by

(A 32) or (A 33). Then the total strain energy of the panel can be expressed
in the form

2 2
U—qu +2.B2qr+B3r
+ ZB4qk+ ZBS(Qh+ r k) +2B6rh
2 2 (A 34)
+B7k +ZB8kh+th
+ ZB10 q + ZB“ r + ZBIZk + Z-Bl3h
+Bl4+Bl5
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where the Bj' j =1, 15 are given in Forest Products Laboratory Report

No, 1583-B (2) by formulas (A 19) and (A 17) with w taken as (A 32) or (A 33)
of this report,

The work done by a shear force of N  pound per inch of edge is given by (A 10),

The condition for instability is

U =U (A 35)
or N = U (A 36)
xy

where

ow Bw (A 37)
// dy dx
rj=1, ..., 15 (A 38)
9w 8w
// 8% By dy dx

so that U’ is given by (A 34) by simply inserting primes.

It is convenient to let

The conditions

ON, N, BN, ON,
5qg -~ % Br - % Br % SR =0

are now imposed for the determination of g, r, k, and h. These yield equa-

tions (A 26) of reference (2). When solving those equatmns for g, r, k, and h
and substituting their values into (A 36),it is found that
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1
B! B B B B |
: |

1 4 5 10
B B B B B ;
B B B B B,
B, B, By B By,

B/ B!'' B! B' B!
N odl0 711 712 713 “ha + B (A 39)

xy Bl BI BI B! 15

B B, B! B)

' ' 1 1
B4 B5 B B

These determinants can be evaluated by the process given in Appendix C of

reference (_?:). The term Bl'5 represents the effect of the bending of the facings

about their own middle surfaces and is hereafter neglected.

The condition for instability (A 36) can be reduced to dimensionless form by
defining Lcr as in (A 21), and by introducing the notation

T b 2 h
a .
/ [ 22 4y ax
A
j ox
c, = 2 2
1 ﬁz a b?_".‘_’?j’d e
F) ox By 7
a
o 0
> (A 40)
a b .2
dw ,2
/ /(axay) dy dx
o 0
c. =
ot P
aZ dx 8y Y
o o
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\‘w
Rﬂ
S AQ’
e

VN

(=9

<

&

c = o 0 |
ot Pewew |
2 ox 3y Y
a
[¢} o
/ /'(8w2 dy dx ‘ o
c, = (A40) '.-
4 dw 0w ]
sz 5% oy 9 9 ‘
[ [o] B

5
8w 8w
/ / % By dy dx
-
In this notation, (A 36) becomes S S
t = L
tFII%nLl)FIH—k( +c5)FF
L_= (A 41)
cr x __l
¢l+[tFIL2+(1-t Ll] + Fle
4 4 5
where
\
g, =t°F +2t(1-0F_+ (1-9°F
1 - 1 B V) - 2
- 3 ~N
Ki =g Z[;ic2 + a. r(A42)
1
C C.
4,3 .
L, =aicl+yic2+egg-(a—_+yicz)>1-1,z
2 2
Fi =% -8 o vk
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R Y cz+c—3( + ) | (A 42
12225 G Rk TR TR )
- A
- For the finite rectangular panel, wis given by (A 32) so that
Zz 2 2 2
(1+ nf 202 4 gp22an
2 2
. = b b
1 2 az
2n — 0
b
a.2 Za.Zz
=+ —’12-)(1+n)
o = b b
2 2 a.Z
Zn = N
b
4 >(A43)
i4 (l+nz)2+4n
o = b
3 2 a'Z
2n = M
b
1 Za.2 2
o=, M
= b
‘4 Y
Zn = M
b
2
EZ (1+n2)
% = )
2n =5 N
° J
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Examination of the terms in Lcr given by (A 41) reveals that n never occurs

to a degree higher than £ and the only eighth degree terms are the FIFZ terms.

Hence, as n becomes large these terms dominate and Lcr becomes

st
. =_j +2nsy_l+9qz
cr 48 S T 2608
x 'y X

The slope of the buckles, n, is now adjusted so as to minimize Lcr. Setting

——

GLCI_
9 =0
-3
yields n =29 go that
1 (A 44)
L, * V5§
X Yy

when n, the number of buckles, is infinite.

When n is finite, Lcr is given by (A 41). One can find the least value of Sx

——— o

for which (A 44) is applicable by imposing the cog:dition that (A 44) is less than
(A 41), letting n approach infinity, puttingn = 6 , and solving the inequality

for Sx . The general result is rather cumbersome and is not given here but the

resulting inequality for constructions with similar isotropic facings and ortho-
tropic cores is

l-¢

() 40+ (1 - 6)°
S 2= (A 45)
* 1"U.f 2 a2

(——) (1 +9) [9+;2]
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where oo is Poisson's ratio of the facing material. If the core is also isotropic, %

0 = 1 and this result reduces to

$>8 = ——s (A 46)

When Sx < Sx the errors in this analysis that arise from the failure to

1

satisfy the conditions of simple support exactly become worse as Sx becomes
small, and the Fourier Series method of section (A 1) gives better results, If
(A 41) is to be applied in the range 0 < Sx < 8, however, then the integer n

must be chosen by trial so as to minimize Lcr' This yields a scalloped curve,

whereas the exact curve obtained by Fourier Series is smooth (fig. 16).

For the infinitely long panel, wis given by (A 33) and from (A 40)

2 2
a 2.2 a 2 M
(L+=, n7)" +4 =,
_ 6 5
¢ = L2
2 =, n
5 2
2 2
2 (1+2 49 .
2 5 2
6
c, = 5 > (A 47)
2 &
, M
6
4
a
G = 2
2-—-2 M
5
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a.2 2

1+—2n
c = 6
4 az
2=

§2 M

(A 47)

]
|H

% 2n

Again Lcr is given by (A 41) except that now, for the infinite case, the cj,

—— —

j=1, ..., 5 are given by (A 47). Again, the 1"‘1 F2 terms dominate the ex-

pression for Lcr as %— approaches infinity; that is, as the half wave length be-
-_ = -3
comes shorter, again the bestn = 8 , and the same limit, (A 44), results,

Formula (A 44) yields lower values of Lcr than (A 41) if Sx > le where Sx

1

can be obtained by the method outlined above, For sandwich constructions
with similar isotropic facings and orthotropic cores

l-¢
(— £y 40+ (1 - 9)2
S, = (A 48)
x]
ooy 2
( Yy (1 + 0 0
2
If the core is also isotropic
S1 =1 (A 49)

Formulas (A 48) and (A 49) seem reasonable since they follow from (A 45) and
a

b

(A 46), respectively, in the limit as — approaches zero.
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A 4. Finite Isotropic Panels,
All Edges Clamped

The equations of equilibrium of a panel subjected to shear force of intensity
N units per inch of edge may be given in the forms ((6) pages 13 and 14).

% 0% | 8% _ 6 N
xy 9x0y ax 8y
p (6w 8% (1-0)D azQx D BZQx (1-0)D BzQy
DTzt z)t 7D > th 3 - %t 3D hwpy - 0 (A 50)
oy Q oy Q 9x Q Y
] Bzw 8 %w (1-0)D aZQy D SZQy (1-0)D BZQx
a1 W Y A 3 2 ‘bz "R TD tway 0
Y \ox By Q 9x Q 9y Y Q Y

In these equations the symbols o, D, and D_ denote, respectively, the Poisson

Q

ratio of the facings, the flexural stiffness, and the shear stiffness of the sand-
wich, It is assumed that the core and facing materials are isotropic, and that
the effects of the bending of the facings about their own middle surfaces can be
neglected. Consequently, it is assumed that

_ 2-
E { f f.+ £
£ 12 1 2 j
D= — 77—~ |[c+ (A 51)
LY (£1+ fz) 2 /
1'/
and \\2‘
< f1 + fz/
N
DQ = . My (A 52)

These formulas are consistent with those developed in section A 1 of this !
appendix.

For a complete solution of the system (A 50), three conditions are imposed at
each edge. In the present discussion, however, an approximate solution is
given. This solution, obtained from the work of Green and Hearmon (3), is
one in which the boundary conditions imposed are those of ordinary pla-.-te
theory. When S = 0, these boundary conditions are the correct ones, and the
results are expected to be consistent with those obtained in ordinary isotropic
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plate theory. On the other hand, when S is large it is shown in the following
section that since the facings are considered as membranes, the critical
load is determined by the criterion (A 44) as in the case of simple support.
Under the present assumptions, therefore, the effect of taking the boundary
conditions as those of ordinary plate theory is to introduce errors in a range
of moderate values of §.

In order to obtain an equation to which the solution of Green and Hearmon is
applicable, differentiate the second of equations (A 50) once with respect to
x and add to the result the third equation of the same set after differentiating

it once with respect to y. The resulting equation is one in w and 88234 + -88—3!

Then using the first equation of the set to eliminate the latter variable one
obtains

4 4 4~y 2DN_ .4 2DN_ .4
D{8w+ 28W+8w}+ hy tw by 8w

D
8x4 8x28y2 8y4 DQ 8x38y Q 8x8y3
2 (A 53)
9w
B Zny 8x8y

In their discussion of the buckling of plywood plates Green and Hearmon have
applied the following equilibrium equation

4 84w 4 4
—+ 2(D,, +2D,,)———+D _——+ 4D
9x 12 66 axzayz 22 8y4 16 ax3ay

(A 54)
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((3) equation 2.2). This equation is identical with (A 53) provided

D

D, =5,

11

1

12

B 2

0
"

+ 2D

66

- - 7
D,, = D
N _D
2D,
0
J

} (A 55)

With these substitutions the criterion for instability derived by Green and

Accordingly, the critical shear
stress is determined by the condition that the determinant of the following
system of equations vanish ((3) equations 7.7 to 7. 18).

Hearmon is applicable in the present case.

Z Z arsmnArs
r=1 s=1

where

p =
@11 11

518

a = -
rirl = 3
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2
b

47~

1, 2, 3----

=12+8p2+12.p4
2, 2 3% 4 2
8+4p (s +1)+—§—(s +68°+1), sl

3(r4+€ur2+ 1)+4p2(r2+ l)+894. r £1

(A 56)

L (A 57)




Years = r4+ bri+ 1+ sz(rz+ l)(sz+ 1)+ p4 (s4+ 6az+ 1) ,

r#l, s¢l

4 4
W _{(liz_l.L+pz(r+ 1.)2 (52+ 1) + E-Z-(s4+6sz+ 1},

m=r+2 n=s#l

Q
1

4 3 '
-{}—Ezt—l-L+ sz (r + 1)Z+ 4p4}, m=r+2 n=s=1

n

4 2 4
'{r +£;r +ll+pz(r2+l)(a+1)z+%—(s+1)4 ,

m=r#l, n=8+ 2

s 4
-T+ sz(s+1)z+-3-%—-(s+1)4}, m=r=1, n=s+ 2

. 2
%{r+1)2+ 0" (s + 1)2} , m

2
esmn = -}I{(r + 1)2+ pz(s + 1)2} , m

r+2,n=s + 2

r+2,8s=n+2
3 2 2 2 2
= - (16) Prsmn ny {r +m -2)(8 +n -2

+ZS(rZ+mz+ r2m2-3)(sz+nz-2)

2
+ Zsz(r2+ m - 2) (sz+ n + nza2 - 3)}

F 2127 (rz-mz)(sz-nz) {Er-z)z-mé}{HZ)Z- ?{s-l)z- é}{sn)z-n?}
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r+ mands + n odd

(A 57)
mnrs = rsmn
Here the notation 2 N
N a
L = _.’.‘.Y_Z_
xy in X ¢
? (A 58)
s.T.D_
h aZ DQ J

which, according to formulas (A 51) and (A 52), is consistent with (A 15) and
(A 21), has been used,

The system of equations (A 56) separates into two parts, one in whichr + s
are odd numbers in the other r + s are even numbers, Consequently, two
determinants must be considered and the critical stress is obtained from the
smaller 1. for which one or the other vanishes.

XY

A 5. Infinite Isotropic Panels,
All Edges Clamped

The buckling load of an infinitely long plywood panel has been discussed by

Green and Hearmon,and their criterion for instability is made applicable to
the present case by the substitution (A 55). Thus, the critical shear load is
determined by the condition that the determinant of the system ((3) equation
8.6)

o0

A =0, m=1, 2, 3---- (A 59)

vanish, The coefficients o are given as follows ((3) equations 8.7 to 8, 12)

————

2 2 22 3
4 8r 2/5r 16 4 T _l6
Yr T + 2p (—-——-3 -—-9 + G + 5 "2z r odd
s w Tr
F (A 60)

2 2 22
4 24r 2 (Tr 48 4 mr o _41_
- 2*2'*(5 'z>+“ <”105 23) Teven

1}

L1}
L2

o ™
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r#m

4 wzrm 8(ﬁ+ 4) r odd, m odd
ML S - 3

24rm 2 {Zrm 24 (r2 + mz)l -
= - + 2p -
2 5
n T rm
. }:} frzrm 24 (r4 + mjl} r even, m even
05 ~ 23
kl > ™ r'm r #m
—4ip.nyS 24m N 2m3r
%%m r 2 2 2 >(A 60)
T r -m

41“'sz 2 "n'zrm 24m 2Q4+ m4 - rzmz)
i L+ w8455 - 57 - 7 2
mr rm(r - m)

r odd, m even

) 4iunys >4y +2mr3
%m - T 2 2 2

T m m ~r.

4ipL re 4 4 2 2
2 -
+ xy (1+Zs) "n' rm  24r N 2(r+m -rm)
T m rm(r -m")
r even, m odd
where v
i=AN-1

and p denotes a real parameter, which is proportional to the wave length of a
longitudinal section of the panel. The critical shear load is determined from
the minimum Lx » with respect to u, for which the determinant of the system

(A 59) vanishes.
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A 6. Limiting Behavior When § is Large,
All Edges Clamped

The method used in section A 3 can again be applied to derive formulas that
are applicable when § is large. For the case of a finite rectangular panel with
clamped edges, the deflection

_ 2 wx 2 my nw

w = C sin ~ sin T cos?(x+y) (A 61)
is assumed. The slope of the buckles is assumed to be 45°, Then using
formulas (A 40) for the determination of the ¢

» J=1, ..., 5 and substitutin
_1 g
into (A 41) for L it is found that

1
er S (A 62)
3
h S = 4
when §25, = 3 (A 63)
1+%,
b
corresponding to n infinite.
For the infinitely long panel
w=Csin2“—xcosl( + x) (A 64)
a ) y

is the assumed deflection and, for a infinite, formula (A 62

5 ) again gives Lcr

when

S">‘81=

W

(A 65)
which could also be obtained from (A 63) by letting % approach zero,

Report No. 1560 -51-




APPENDIX B

Details of the Numerical Analysis

B 1, Finite Dissimilar Panels,
Simply Supported

For each panel considered, 30 terms were optimally selected from the double
infinite array of terms cmn' The selection was made in the following way,

From the first 49 terms (all terms for which m + n< 14, m + n even), the
pair that yielded the lowest LCr when used in a 2 X 2 determinant was found by
trial. With these two terms, each of the remaining terms was used to com~
pute Lcr from a 3 X 3 determinant and the one that yielded the lowest Lcr was

determined, These three terms were assumed to be the most important,
They were used to order the remaining terms on the basis of the value of Lc
that each yielded when taken with the three most important terms to form a
4 X 4 determinant.

The first 30 terms of that term order were then used in the computation for
that panel.

Since the determinant of system (9) can be factored into the product of an even
determinant (m + n even) and an odd one, it was necessary to investigate both
factors to see which yiclded the lower theoretical buckling coefficient.

Figure 2 shows the results of study made on a single panel. This behavior is
typical of all the panels investigated in this report, and explains why the

a
curves of Lcr versus ¢ are cusped. Note that the curve for each determinant

is itself cusped, although no particular integer is associated with each branch

between cusps. The portion of the curve (fig. 2) for m + n odd between % = .75

and % = | ig shown as a straight line, although not enough points were plotted

in this range to establish the exact shape of the curve. The straight line is
based on only three points, and may be a coincidence,
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To determine the number of terms needed for accuracy, a panel with Sx nearly

equal to le and% = 0.25 was solved by using a varied number of terms
drawn from among the first 81 terms. Thirty terms yielded results with an
error of less than 1 percent. Equal accuracy could be obtained by drawing

the best 30 terms from among the first 49 terms. The variation in Lér with

number of terms is shown by the following:

Finite Panel Infinite Panel
@) = ay = By = B, =1 @ = ay = By = B, =1
Yl =y2=0.375 Yl =Y2=0-375
a 1 a
5 1 p =0
6 =1 § =0.8 6 =1 S8 =0.,8

X x
Lcr Number of Terms chr Number of Terms

1,641 4 1.5376 2
1.326 1v 1,5323 3
1.309 15 1.5306 4
1,289 20 1.5296 10
1.282 25
1.279 30

a .
The accuracy of this method improves as  increases or Sx decreases, so all

the design curves in this report are surely accurate to within 1 percent.

Section B 4 shows a block diagram of the computing method which resulted
from the foregoing preliminary investigations.
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B 2. Infinite Panels, Dissimilar Facings,
Simply Supported

System (A 31) found in section A 2 also factors into an even and an odd deter-
minant, but computations made with each of them agreed to five significant
figures, so the odd determinant was discarded.

The results of an investigation of the number of terms required for accuracy

wag shown previously. Four terms are evidently sufficient to give accuracy
comparable to that obtained for the finite panels,

The variation of Lcr withg- was investigatcd in detail for four panels.

Figure 3 shows the four curves that were obtained. Since the curves are
roughly parabolic, fairly good results can be obtained by fitting a parabola to

three points corresponding to -2— = 0.5, 1.0, and 1.5, A highly accurate final
result can then be secured by hunting in the neighborhood of the minimum of

the fitted parabola. Section B 4 shows the computing method in detail.

B 3. Clamped Isotropic Panels

The methods of sections A 4and A 5 were used to compute Lcr for square

panels (% = 1) and infinitely long panels (% = 0). For the square panel, a

5 X 5 determinant composed of the coefficients of All’ A A

22" A1y Ay 2nd

A,y in equation (A 56) was used. AtS = 0, L, = 15.4, which is about 5 per-

cent higher than the value L =14.7 given by Smith (9) who used a 12 X 12

determinant. The value Lcr = 2.96 was obtained at S = Sl = 0,375. This

is about 10 percent higher than Lcr = -é— = 2.67. A curve constructed from the

Vcomputed values is given in figure 17, which also shows formula (23) for com-
parison.

In the computations for the infinitely long panel a 3 X 3 determinant composed
of the coefficients of A AZ’ and A3 in equation (A 60) was used. The value

Lcr = 5,35, which was obtained at S = 0, is the same as that obtained by
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Smith (9). A computationat 8§ = 1 gave L = l.11, whichis 11 percent

high. This point, however, is included in the range S5 > 0.75 where Lcr a %,
and it is expected that the error at § = 0.75 would be somewhat smaller.

The above computations are compared with formula (23) in figure 17, which

indicates that formula (23) gives values of L . that are conservative by as
¢

much as 10 percent in some ranges of S.

In order to estimate the accuracy of formula (28), which is based on formula
(26), figure 16 shows a comparison of formula (26) with computed values of
Lcr taken from the design curves for simply supported panels. The figure

indicates that the formula is never more than 10 percent low.

B 4, Block Diagrams of Computer Programs

Program 1. Finite Dissimilar Panels, Simply Supported

9

Read and print a; Bl’ 'yl,_ti, @y BZ’ YZ'

——— — a— — —— —

J

Store integers m in array m,
-_ 1

, B, and S
- =X

lo|®

Store integers n in array n,

b
Compute — V. and store in array V,
a mlnl 1

mn,
rs .

Compute H = H 4 Jand store in array H_ .
mn m.n, i

!
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¥

Get best 2 X 2 by trial

Get best additional term by trial .

Compute Lci from a 4 X 4 for each remaining

term and store in array L,
1

A%

Reorder array Li monotone increasing,

reordering all other arrays correspond-
ingly, with first three members corre=-

sponding to best 3 X 3

:

Set trial I, = .85 N’-I"..‘:}; AL = .06 L

Print heading:
TRIAL L. DELTA L DETRMNT NR TRMS
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A4

Solve for L by trial, refining AL by

halves, and printing after each trial,

until AL < .02L

AV

Interpolate between best two values of

L and determinant, and print interpo-

lated value of _{.J_

5

Program 2. Infinite Dissimilar Panels, Simply Supported

Read and print o, S,, V,» t: a, B, ¥

Store integers in array q.
i

Store even integers in array m,

Store odd integers in array n,
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R

Compute H = H_ ' and store in array Hi

m I'l’li
Print heading:
L SQUARED DELTA /A

4

Set g— = 0.5 and call subroutine A to get l..j
2

by trial. Print_I.ﬁand-g_- . Set Y, = L

.

Set Z—= 1.0 and call A. Print I_:__andg. Set Y, = Lz
Setg— = 1.5 and call A, Print l.._za.nd% . Set Yy = LZ
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|
2y, - 7y, + 5y
Set ':f = 2 4 3 1 « This locates
2Y, - ¥3 -V

the minimum point on a fitted parabola.

Call A. Print]_.._z_ and-g-. Set Yy ® LZ

o

Increment -:— by .05 and call A. Print }_Eand -2-:.

Set Y, = LZ.

Iterate until _I:_Z_ stops decreasing,

Find least value of _1_: in array A and take square root.

\%
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(}__.

Print E

(SUBROUTINE A)

Q__

Compute -§- 'V and store in array V,,
a qil i

4___

Compute elements of the determinant,

G___

Set Ei equal to lowest root of a literally expanded

2 X 2 and use it to evaluate determinant,

Q___
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Decrease _1_.4_3 by (. 0012 I.‘2 and evaluate determinant,

Interpolate to find _L:'_ for which

determinant equals zero.

\/
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Table 1. --Buckling coefficiants for simply supported panels {computer output)

LCl‘
.............................. qommm e e S e L
m + n even : m 4 n odd m + n cven

Sy O ¢ 167 . 250 : L3335 333 5 Larr s Lsar s ssee s Tawr i TTheaTUiiee

"'":"""""""L'l'l"f,-}3'1_;"{.';1"-'"3:7’5","0;":'1',",3'2"'B'.Z'."y;:;'é.'i,"r}';'I"' """""""" .

0 0 5. 34 5.64 Ls.85 . £6.09 6.57 7.49 : 9.35 .
1/3 5.04 : 5,18 5.60 5.51 @ 5.74 : 6,44 6.27 : 6.97 : B8.66
23 . 479« 491 . ;5,130 . 524 5,42 . 6.06 . 5.96 . 654 8. 08
L 4.58 -:24.70 . 483 )L 03 .ls.oz I£5.13 . 566 6.18 : 7.57
.os:: 0 . 4.53 . L a1e ;:55.04:: 541 . 5.95 . 7.0l
; 13 . a0 440 . C 468 466 . 418 | 5.23 L 5,20 L 56l 6.60
23 aan a2 L 446 a6 455 . 4.97 498 . 531 . 626
1 .394. .414' ; 24,35 '475 5. 08 5.96
L1 0 3.93 4.09 :;54.129 4,55 4.93 : 5.60
13 3.15 . 382 . . 402 . 40 409 | 439 4z 470« 533
2%+ 360 1 367 . .385.387:'393I4Zl. 4.26 . 4.50 : 5.11
1 3.46 3.62 2377 . 4.08 4.33 4.90
2.0 3.09 3.18 23,29 3. 44 3,61 3.92
1z . 2,90 . 2,97 . © 306+ 308 . a2 P T
L 278 ; 2.89 . . .iz.qs : 3. 1% 3,28 3,60

|
4 0 2.12 2. 16 2. 23 2.29 2.37

1 1.98 2. 01 2. 11 2,18 - 2,27

(Sheet 1 of 3)
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Table 1, --Buckling coefficients for simply supported panels (computer output) (continued)

m + n sven H m + n odd H m + n even

HEXIE R R Y D L R R “ejececen sesscancaw PRI Y L LR T R e L R N
% O i .167 : .250 : .333 : .333 : 417 : .542 : .500 : .542 : ,750 : 1.000
----- jeevscalenonses lmenucendecccancd suananloannensftacmanedermencaamnmnanaden oo e ceaan ol

a * 1, By=L vy = .35 o= 1, B, = 0.6, Y, =20.2, 6=2.5

0 0 H : : : : (See 8 = 1) : : : :

1/3 : : : : (See B'a 1)

: 213 : : : : (See 08 = 1)
1 : : : (See 8 = 1)
05 : 0 : 4.33 : . 4,50 : cd463 ; . 5.00 : : 5.3 : 5,97
: 1/3 ;4,14 : 4,21 : 4.40 @ 4.42 : 4.49 : 4.77 : : 4.84 : 5,09 : 5,68
c2/3 : 3.96 : 4.04 : . 422 4,25 : 4.30 ; 4.56 : . 4,67 : 4.87 : 5.42

© 1 3.8l : 3,97 : laag ; 4,46 : . 4.68 : 5.19

10 361 . 3.70 3,78 ¢ , . 3.97 : . 4,14 : 4.40

S 102 i 341 3.47 . 3.54: 3.58 : 3.61 : 3.71 : : 3,81 : 3.92: 4.17

2 10 i 2,83 : 2,66 : L7 : PR TR . 2.78 : 2.84
P10 2,44 : . 2,48 : 149 : : . 2.54 : 2,63 1 2.68
4 10 i Lse: NI : : : D159 L6l 1.59

01 o 1.52 ¢ : 1,55 : : : : 1,54 : 1.57 ¢+ 1,55

(Sheet 2 of 3)
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Table 1. --Buckling coefficients for simply supported panels (computer output) (continued)

05:0 462 : ;.85 : : : P o5.59 o626 (4)

/3 ;. 4.37 : 4.48 : 4,81 : 4,76 : 4.92 : 5.46 : : 5,35 : 5,88 : 7.13

 2/3 ;. 4,17 ¢ 4.28 : T 4,57 @ 4,55 : 4,67 : 5.17 : : 5,11+ 5.5 : 6.73

: 1/3 : 3.88 : 3,96 : : 4,23 ¢ 4,19 : 4.32 : 4,74 ; : 4,68 : 5,10 : 6.09
c2/3 . 3,71 . 3,79 : : 4.04 : 4,02 : 4.12; 4,52 : 4,49 : 4.85 : 5.80

1 : 3,56 : 3,74 : : : ;4,30 : 4,65 (9)

1 i 2.93 ;3,07 : : s 23,22 T 3.48 374 (9

12019 . 2.28 : : : . 2,52 . 2,69 1 (9) .

—a,b = . 410

4
= 0 = 2,5 to construct a curve.
Use values from g co (Sheet 3 of 3)
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Table 2. --Buckling coefficiente for simply supported panels (computer output)

'
cr

a’/b: ! m+ n even m + n odd : m t+ n even

® ¢ 0 ¢ 167 : .333: 1333 : 417 542 : 542 : .750 : 1.000
. csussimemamclecccmendesunnesdecnansn s Poemmnns lwmmsmeelorascsadancnansndenaan-
@ = 1.5 =06 y =02
f
5 ) 0.4:0 : : : (See 6 = lintable1) : : :

© .1 3,97 : 4,04 : 418 : 4,25 : 432 : 4.47 : 4,68 : 4.91 : 5,40

2,22 : 2,25 : 2.31 : 2,34 : 2,37 : 2.45 : 2,52 : 2,63 : 2.91

*»

1 : 0 . 5.61 . 5.73 5.93 6.05 : 6.15 ' 6. 41 :: 6,77 . 7.12 7.90
:: .1 .: 5.87 3.92 ‘ 4. 04 4.08 : 4.17 ‘: 4, 26 . 4, 44 4. 64 4,96
: .4 2.01 2.03 . 2,06 : 2,06 . 2,09 : 2.10 ' 2.14 2.20 2,27
2.5 0 (See G: = 1lin t;ble 1)
[ . .1 : 3,62 : 3.67 : 3.74 . 3.73 3.82 3.86 3.93 ' 4,12 :' 4, 22
.: o4 f 1.56 1.64 1.58 1.60 1,57 1,60 ' 1,58 ; 1.61 ' 1.58

| o= .667, B =0.6, v = 0.2
j{ 4 :0 : : : : (See 8 = 1 in table 1)
1 10 3,11 ¢ 3,24 : 3,60 : 3,44 : 3,67 : 4,29 : 3,91 : 4.50 : 5,89

.4 ¢+ 2,10 : 2,16 : 2.32 : 2.26 : 2,35 ;: 2,60 : 2,50 : 2.74 : 3,25

1 1 0 ¢ 3,74 : 3,91 : 4,41 : 4,18 : 4.53 : 5.44 : 4,83 : 5,72 : 17,90

¢ W1 ¢ 3,03 : 3,13 : 3,41 : 3,30 : 3.46 : 3,90 : 3,68 : 4,06 ;: 4,96

t .4 : 1.89 : 1,92 : 1.96 : 1,97 : 1.99 : 2,06 : 2,07 : 2,12 : 2,27

2.5 : 0 : : : : (See 8 = 1in table 1) :
: .1 : 2.84 : 2,89 : 3,03 : 3,01 : 3,06 : 3,27 : 3,27 : 3,40 : 3.7

.4 ¢+ 1,46 : 1.48 : 1,48 : 1,48 : 1,48 : 1.48 : 1.49 : 1.50 : 1,50
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Table 3.--Results of tests of square, flat panels of symmetrical,
isotropic sandwich constructions in shear

Panel :Buckling: Maximum: Facing : Core :
load : stress !

size :

2

load
P

shear :

;at buck-: modulus:

ling

fload ilff

Ke

82.

i

Lcrz

:ccmputedl
tbuckling
i stress

¢

D T T T Ty {emcemceslenaustcnl nmuenca #lecenenenl snsancnsl cvecuvnanl tsansdon  cnencmen! eeenun e

8pecimen:

No. i
sPacing=
Pof

In.
16 0.020 :
17 .032 :
18 .020 :
13 020 :
14 ,032 :
15 012 ¢
61 .032 :
62 ,032 :
71 .032
72 ,032 :
81 .032 :
82 .032 ¢
83 .032
91 2032
92 .032
93 .032 :
101 .032
102 .032 :
1 .012 :
3 012 :
4 ,012 :
5 012 :
20 .012 :
19 ,020 :
121 .020 :
122

,020 :

Thicknesses
: Core Total :
[

if. In,
0,142 : 0,182 :
148 : ,212
.139 179

132 172
133 197
.118 142

.137 ,201
.129 .193
.133 .197 :
Jd34 .198
137 .201
.139 .201
.152 216 ¢
127 191 ¢

132 196

127 .191
126 .190 :
123 .187 :
125 ¢ 149
,126 : .150
127 L1511 ¢
127 .151 ¢
125 : W149
24 ,164
L2463 W283 :
.282 -

.262

16
16
16
18
14
18

Lb,

CORES OF CORKBOARD

6,500 :
. 11,800 :
5,200 :
3,200 :
5,800 :
2,000 :

Lb.

: P,g, i,

6,700 :
12,300 :
5,540 :
3,700 :
7,550 :
2,140

7,180 :

8,140 :
5,740 :
3,140
4,570 :
3,270

CORES OF HARD SPONGE RUBBER

14
14
18
18
21
21
21
26
26
26
34
34

¢ 14,600 :
: 14,100 :
: 153,700 :
: 14,950 :
: 17,750
: 17,500 ¢

15,200 :
: 16,000 :
: 18,000 :
: 17,000 :
: 16,000 :
: 20,000 :

14,600 :
14,100 :
15,700

14,950 :
17,750 :
.7,500 :
15,200 :
17,150 :
23,550 :
17,550 :
17,440 :
20,000 :

11,500 :
11,100 :
9,600 :
9,200 :
9,300 :
9,200 :
8,000 :
6,800 :
7,600 :
7,200 :
5,200 :
6,500 :

CORES OF END-GRAIN BALSA

20
20
20
20
20
20
20
17

: 10,000 :
5,200 :
8,790 :
5,360 :
6,700 :

: 16,080 :

;34,000 :

: 30,450

11,150 :
5,200 :
8,790 :
5,360 :

6,700

H

16,080 :
36,150
30,650 :

14,700 :
7,660 :
12,940
7,890 :
9,870 :
14,200 :
30,000 :
31,900 :

P.s.i, :

1,500 :
1,500 :
950 :
320 :
320 :
320 :

3,400 ¢
3,400 :
3,400 :
3,400 :
3,400 :
3,400 :
3,400 :
3,400 :
3,400 :
3,400 :
3,400 ;
3,400 :

15,000 :
15,000 :
15,000 :
15,000 :
15,000 :
15,000 :
15,000
15,000

0.400 :

669 :

.620 :
1.382 :
3.680 :

L741

+356 :
336 :
.210 :
2211 ¢
159 :
.161 :
176 :

.096 :

,100 :

.096 :
.056 :

.054 :

.013
013 ¢
013

013

.013 :
.023 :

NMOWORPDONW~OX
[« e S S N - EVURR .

= BN . R Y R L

-
—
-

-
~

11,48
5.90

9.82

5.98
7.13
10.05

Sereseeselanrreenes

terasanst

P.s.d.

LR N R R R X
fieesnesvee
.

Teeaansonts
Seeeseresas

Teanernn
I---l-cva'l
Teresneerns
feessnnenase
: D N )

N
fseavnonane

dessatan e
R R TR
Teresenaner
Trrecssreane
Trssseerens

29,600
31,700

da11 facings were sheets of clad 248-T3 aluminum alloy, Ef = 10,000,000 p.s.{.

235 =

nl e £ Eg

2 A 82 Mg

3

not be computed,
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“Values in this column were computed for stresgses above the proportional limit for which values of § could
The edges were asgumed to be simply supported.
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Figure 1, --Sketch showing position of axes relative to the sandwich

construction.
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Figure 2, --Both roots of determinant of system (9). At any T lower

root is L .
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Figure 3. --Effect of buckle size on critical load of infinite long panels.
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Figure 4.--Buckling coefficient, L'cr' tor simply supported sandwich

panels with isotropic core in edgewise shear.
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Figure 5. -~Buckling coefficient, Lcr' for simply supported sandwich

panels with orthotropic core in edgewise shear.
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Figurc 6. - -Buckling cocfficient, Lcr' for simply supperted sandwich

panels with orthotropic core in edgewise shear.
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Figure 7. --Buckling coefficient, Lcr’ for simply supported sandwich

panels with orthotropic facings in edgewise shear.
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Figure 8, --Buckling coefficient, Lcr, for simply supported sandwich panels

with orthotrupic facings in edgewise shear,
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Figure 9. --Buckling load factor of homogeneous isotropic plates.

curve from reference (9).
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Figure 10, - -Arraugement of apparatus for testing a square, flat

panel ot sandwich construction in shear.
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HOLE FOR 1"® PIN

BIRCH PLYWOOD
LOADING RAILS 1" OF
14" IN THICKNESS BONDED
70 EACH FACING

\CU/‘?VED TO RELIEVE
STRESS CONCENTRATIONS

Figure l1l. --Sketch showing arrangement of loading rails and pin
positions for testing square, flat sandwich panels in shear,
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Figure 12. --5Strain circles of strains measured in loaded corner
showing variation in quality of shear as direction of applied
load was changed. Data from panel 121 at P = 5,000 pounds.
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Figure 13, --Strain circles of strains measured at various locations
on panel 121 at P = 20, 000 pounds at 0 = 35.5°,
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Figure 15, --Reciprocal stress-modulus curve of clad 245-7T3
aluminum alloy for use at stresses above proportional limit
values.
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Figure 16, --Comparison of exact and approximate solutions for isotropic
panels.
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Figure 17. --Buckling load factore for clamped panels. Results by

computations and approximating curves for -:— = 1 and % = 9,
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